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Abstract: Maximum entropy methods are becoming increasingly 
important in the analysis of neutron scattering data, principally 
for the.deconvolution of the instrumental resolution function from 
measured data, and for the inversion of structure factor data to 
pair correlation function. It is demonstrated that maximizing the 
entropy of the estimated distribution does not necessarily 
guarantee that the inverted distribution is free from artifacts 
associated with the truncation, noise and systematic effects in 
:he data: the result can depend quite markedly on the assumed 
prior distribution used to calculate the entropy. For the 
structure problem a novel exponential weight on the Fourier 
coefficients is introduced which serves to ensure that the 
structure factor and its derivatives are continuous. The rate of 
exponential decay, which is related to the width of the narrowest 
peak in the structure factor is determined by an inverse 
correlation length that can be obtained from the data. In this way 
the results are markedly less dependent on the assumed prior 
distribution. 

1. Introduction 

A broad class of problems in neutron scattering involve the inversion of a set 
of measurements, the data Di, to a desired distribution function, N., the N. 
being related to the Di via a transform of some kind:- J J 

, i,j= O,l,..., 0 (1) 

This inversion is often impossible or ill-conditioned for several reasons:- 

(a) the transform may not be linear; 
(b) the data may be incomplete, i&l . . . i2; 
(c) the data are measured at discrete points; 
(d) the data may be noisy; 
(e) the data may have systematic errors. 

Because of the ill-conditioning it is likely that several or perhaps a large 
set of distributions N 

j 
can be regarded as consistent with the measured data. 
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Over the years a large number of methods have evolved to cope with the variety 
of difficulties which arise in the inversion of incomplete data. Of these it 
is claimed, Jaynes (1982)) that the Maximum Entropy (HE) approach, which 
attempts to avoid producing any information which is not justified by the 
data, provides an independent assessment of all the possible solutions to a 
particular problem, and so leads to that solution which is “maximally 
non-conuni t tall’ with respect to the unmeasured data. This is achieved via an 
entropy metric which is usually defined as 

A = - 1 Nj In (Nj/Pj) + j Nj - 1 Pj (2) 

j 

where P represents a **prior” distribution which incorporates previous 
knowledge about the distribution not contained in the data. The second and 
third terms are introduced in (2) in the event that N and P are not 
normalizable distributions. In the absence of any other information the ME 
solution, which attempts to maximize H, is simply N = P for all j. When 
constrained by additional information, i.e. the measured data, the entropy 
falls below its maximum value. The object of the ME method therefore is to 
find that solution for N which satisfies the data but which also keeps B as 
near as possible to its maximum value. It will be seen that this definition of 
R only exists if Nj,Pj > 0. 

The goodness of fit to the data is usually measured by a X-squared statistic 
or R-factor: 

Rf 2 = 1 (Di - Mi)2 / 1 Di2 

i i 

where M. is an estimate (or “model”) of the i’th data point obtained from the 
estimate3 trial N distribution via (1). With this definition a “quality 
factor”, or Q-factor, which represents how well a particular solution 
satisfies the dual constraints of entropy maximization and fit to the supplied 
data, is defined as 

2 
Of = - H + xRf2, (4) 

where x is an undetermined positive multiplier which controls how closely the 
model fits the data. Therefore it is the Q-factor which is to be minimized, 
with x determined by constraining the R-factor to a predefined value. 

In setting up the NE solution for a given experimental situation, there are 
two questions that need to be confronted. 
distribution 

Firstly what is the most appropriate 
space, the N distribution, in which entropy is to be calculated? 

Secondly, what is the most reasonable choice for 
distribution. 

the prior distribution, or P 
It is frequently assumed that the prior distribution should be 

uniform even though the existence of the data implies that the real 
distribution is anything but uniform. Unfortunately both of these questions 
are often ignored in the literature, there being an implicit assumption that 
somehow maximizing entropy will cover up all the difficulties. In the sections 
that follow I will apply the HE method to the problem of calculating the pair 
correlation function for a liquid or amorphous material from structure factor 
data. I will demonstrate that the obvious choice for the distribution N is in 
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fact quite inappropriate in this case, and that the result of ME analysis can 
depend markedly on the choice of prior distribution. Full details on the 
correct choice for the N and P distributions for the entropy estimation for 
this problem are given elsewhere, Soper (1988), but some examples of the 
results are shown here. The conclusions to be drawn are applicable to many 
other applications where ME techniques are used. 

2. Solution of the Maximum Entropy Problem 

The general solution of the ME problem is a highly non-linear problem and 
several solutions exist, mostly using sophisticated search procedures, Bryan 
and Skilling (1984). I have a developed a Monte Carlo (MC) solution to this 
problem which has several attractive features. In particular it is simple to 
execute, can allow error bars on the calculated distributions to be estimated 
if needed, and by virtue of the stochastic process intrinsic to MC 
calculations is unlikely to get stuck in local phase space minima. The object 
of the MC calculation is to set up an ensemble of distributions such that each 
member occurs with probability 

p(Qf2) = exp(-Mf2) (5) 

with X a positive multiplier which determines the size of the Q-factor and its 
fluctuations: as X is made larger so the Q-factor is driven smaller and the 
fluctuations become smaller. Full details of this algorithm are given 
elsewhere, Soper (1988), and will not be elaborated further here. However it 
will be noted that in all the examples given below X is kept as large as 
possible, so that fluctuations are held to a minimum and the individual trial 
distributions lie indistinguishably close to the ME solution. Typical run 
times for this algorithm, ,which might involve 500,000 individual moves, are 
-10 minutes of cpu on a VAX 8650, assuming 200 data points and 500 points in 
the N distribution. 

3. The Structure Problem in Disordered Systems 

The underlying transform in the structure of liquids and amorphous materials 
is in principle a straightforward Fourier transform: 

0 

S(Q) = 4xp 1 
r{ g(r)-1 ) sin(Qr) dr (6) 

0 

where S(Q) is the measured structure factor, as a function of wave vector 
transfer, Q, and g(r) is the underlying pair distribution function as a 
function of radial distance r from an atom at the origin. The atomic number 
density is p. Inverting this transform directly can lead to significant 
transform errors because the data can never be measured over a complete range 
of Q values and in any case invariably contain some form of error, statistical 
or systematic. Typically one introduces the constraint of only calculating 
g(r) at certain values of r, according to the Lado (1971) rules for Fourier 
transforms, i.e. Ar=n/Qmax. Furthermore a “window” function is often invoked 
to further reduce the effects of noise in the calculated distribution function. 

This problem is readily amenable to ME analysis. In particular there is 
apparently an obvious choice for the N distribution by virtue of the 
normalization 
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4nll r*[ g(r)-1 ) dr = -1 + oXkBT (7) 

0 

where X is the isothermal compressibility and T is the absolute temperature. 
Aence the “obvious” choice for the N distribution is simply 

Nj = N(rj) = 4~p rj2g(rj)Ar (8) 

where Ar is the bin width of the discretized distribution. Figures 1 and 2 
show the effects of applying ME analysis to the problem of transforming the 
hard sphere structure factor to pair correlation function. In this case the 
input S(Q) is known exactly within the Percus-Yevick approximation but is a 
particularly severe test of any transform method because g(r) for hard spheres 
is discontinuous at3r=u, the hard core diameter. In this case the density was 
chosen such that pu = 0.5, and a large 0 limit of Qmax = 15/u was imposed on 
the S(Q) data, with o = IA. In figure 1 the prior distribution is 

Pj = 0 

pj = 4nprj2Ar 

for rj < u 

for rj > u, 
(9) 

while for figure 2 the prior distribution is set at 

Pj = 0 

pj = 4nprj2Ar 

for rj < 0.750 

for rj > 0.75~. 
(10) 

In either case the fit to the data was the same, (R-factor = 1%); however it 
is readily apparent that the two results for g(r) are not the same. In 
particular the distribution in figure 2 has greater entropy than figure 1 
(-2.064 for figure 2 compared to -2.534 for figure 1) when measured against 
the uniform prior, thus confirming that the algorithm has found the true 
maximum entropy solution for figure 2. This result is apparently at odds with 
our intuition which might tend to favour the one in figure 1 as being less 
“structured”, if the word “structure” in this case is taken to indicate the 
number and size of peaks and valleys in the calculated distribution. In fact 
the distribution in figure 1 is very close to the known exact solution, Throop 
and Bearman (1965). 

The difference between the two solutions is manifested in 0 space not in the 
region of the input data, where the two solutions give equally good fits, but 
beyond the input region. Figure 3 shows the calculated structure factor for 
the distribution in figure 2, and also the difference bftween model and data. 
It is seen that immediately beyond the data (Cl - 15-16 A- ) there is a strange 
cusp in the S(Q) from figure 2, a phenomenon which has been seen before, Root, 
Egelstaff and Nickel (1986). The ripples seen in figure 2 become suspect when 
it is realized they have a period of - 2n/Qmax, where Qmax is the largest 0 
value for the input data. Bence it is concluded that maximizing the entropy 
has not avoided the truncation ripples associated with the discontinuity in 
the input data at Q=Qmax. For measured datasets which usually have a noise 
component, the discontinuities become important since there is effectively a 
discontinuity at every data point. 



Maximum entrcpy applicatbn 715 

2.0 

1.5 

1.0 

0.5 

g(r) 

Figure 1 Maximum entropy pair correlation function 
hard sphere structure factor. 

derived from Percus fevick 
The S(Q) data were truncated at Q = ISA- , and 

the prior distribution used is zero in the region r = 0 to r = IA. The circles 
show the calculated distribution and the line shows the prior. 
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Figure 2 Same calculation and notation as for figure 1 except that the prior 
is zero in the region r = 0 to r = 0.75A. 
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Figure 3 Maximum entropy structure factor corresponding to the correlation 
function of figure 2. The crosses show the residual between fit and data 
shifted below zero by unity. 

4. Solution of the Discontinuity Problem 

I propose two solutions to the problem of discontinuities. The first is to 
effectively force S(Q) to be everywhere continuous and have continuous 
derivatives. To see how to do this a well known theorem from Fourier 
transforms is invoked, Lighthill (1959). From (6) it can be seen that the n’th 
derivative of S(Q) is given by 

0 

S”(Q) = 4~p(-l)~‘~ r”+‘(,g(r.).-1 ) sin(Qr)dr 

0 

and 

S”(Q) = 41tp(-l)(“-~)‘~ fr?l( g(r)-1 } cos(Qr)dr 

0 

Therefore if (g(r)-1) converges slower than l/rn+2 as 

for n-odd (12). 

m, there will be 
discontinuities 
where 

in the n’th derivative. On the other hLd+if exp(arJ$g(r)-1), 
a is a finite positive number, is convergent as r + m then r” (g(r)-11 

is also convergent at large r for all n. For the hard sphere pair correlation 
function the exponential decay of (g(r)-1) with increasing r is an analytic 
consequence of the theory which describes the hard sphere structure factor, 
Perry and Throop (1972). For other liquid and amorphous structures the 
requirement that S(Q) be continuous and have continuous derivatives is a 
necessary consequence of there being no long range order in the material. 

for n=even (11) 
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This exponential constraint leads to a simple revision of the definition of 
the N and P distributions, namely 

N 
j 

’ = exp(arj) * N(rj) - 4x0 exP(~j)rj2B(rj)~ (13) 

and 

P ’ 
1 

=o for rj < u 
(14) 

P ’ 
j 

= 4np exp(.arj)rj26r for rj > 0. 

The primed distributions are used instead of the unprimed distributions 
in the definition of entropy, equation (2). Otherwise the calculation proceeds 
as before. The inverse correlation length, u, is determined from the width of 
the narrowest peak in S(Q), or by inspection of the large r behaviour of g(r). 
Rence for a previously unknown dataset it may be necessary to redetermine its 
value once an initial solution has been achieved. 

Figures 4 and 5 show the results of ap lying this exponential constraint in 
the definition of entropy, with a = 1.81 4 . It can be seen that the ripples in 
figure -2 have been largely eliminated in figure 4, and that the problem of the 
cusp in S(Q) at O=Qmax has now been erradicated (figure 5). The fit is a good 
as before (R-factor = 1X), and the entropy is only marginally lower than for 
figure 2, being equal to -2.096. 

Figure 4 Haximum entropy pair correlation function as for figure 2, but this 
time derived using the exponential weighting on the distributions used to 
calculate the entropy, as described in the text. 
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Figure 5 Maximum entropy structure factor corresponding to figure 4. Note that 
the cusp near 0 = 15/A is absent in this case. 

2.0 g(r) 

1.5 - 

1.0 - 

0.5 - 

0- ,, 

0 
0 
0 
0 

0 Bh 

0 

J3 
I . 1 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Figure 6 Maximum entropy pair correlation function as before, but this time 
using the fluctuations in the Q-factor linearly interpolated between the 
allowed discrete Fourier values. 
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5. Coping with Truncation Effects 

It is apparent in figure 4 that some truncation effects may still be present 
in the estimated distribution functions. These arise because in estimating the 
change in Q-factor at each move, there is a sum over the input data which in 
effect is a Fourier transform of the difference D 

f 
- Mi, Soper (1988). Since 

the change in Q-factor at each move is the driving orce behind the 
calculation this Fourier transform can give rise to exactly the same 
truncation effects seen in a direct transform of the raw data. My solution to 
this difficulty is to evaluate the transform only at the allowed r values ( r. 
= jn/Qmax ), and then interpolate the result onto the required grid of 4 
values by linear interpolation. 

Figure 6 shows the result of doing this for the same input dataset as before. 
Now it will be noted that truncation effects are diminished even further: the 
result is now approaching that of figure 1, but with greater entropy (R = 
-2.141). 

6. Conclusion 

The foregoing text has described the application of the ME method to the 
calculation of the pair correlation function from structure factor data fot 
liquid and amorphous materials. The main conclusion is that ME does not 
automatically guarantee that the results are free from artifacts associated 
with noise and truncation in the data. To avoid these artifacts it is 
necessary to build into the distributions used to calculate entropy known 
physical constraints which must be satisfied, whatever the detailed form the 
distributions are to take. For the structure factor problem these constraints 
include the requirement that the structure factor must everywhere be 
continuous and have continuous derivatives, and that the fluctuations in the 
distributions away from the prior distribution are not biassed by the 
truncation of the input data. Further details and applications of the Monte 
Carlo algorithm used here are available elsewhere, Soper (1988), as well as a 
discussion of the present approach in the context of other recent attempts at 
the structure factor problem. 
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